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Abstract. Branch and bound method and Pijavskii's method are extended for 
solution of global stochastic optimization problems. These extensions employ a 
concept of stochastic tangent minorants and majorants of the integrand function 
as a source of global information on the objective function. A calculus of 
stochastic tangent minorants is developed. 
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Problem of stochastic optimization consists in minimization of a mathematical 

expectation or a probability function. Difficulty of the problem is that the objective 

function cannot be calculated precisely, but only statistical estimators of its values 

and, probably, of its gradients are known. The task is in the search of local and global 

minima of the problem with the use of these estimators. Extensive literature is 

devoted to the solution of convex stochastic optimization problems [4]. Problems and 

methods of searching local minima in nonconvex stochastic optimization problems 

are discussed in [1]. A number of global stochastic optimization problems and a 

stochastic branch and bound method for their solution are studied in [10 - 12], where 

estimations of branches (subtasks) are obtained by means of the so-called interchange 

relaxation, i.e. by interchange of  minimization and integration (mathematical 

expectation or probability) operators. In works [5, 6, 9] the specified stochastic branch 

and bound method is applied to global optimization of probabilities with application 

to the control of environmental contamination, and in [2, 3] it is applied to problems 

of optimal routing and to project management.  

The basic results of the present work are developed in [7, 8, 13 - 17] and consist 

in extension of deterministic Pijavski's global optimization method and a classical 

branch and bound method on problems of global stochastic optimization (with 
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mathematical expectation and probability objective functions).  

A common feature of considered methods is the use of tangent minorants of the 

objective function as a source of global information on the function behavior. Thus 

the key problem is how to construct tangent minorants. For example, as such 

minorants  tangent cones or tangents  paraboloids to the function graph can be used. 

The use tangent paraboloids instead of cones considerably increases  efficiency of the 

method [13]. In [7] a calculus of tangent minorants for complex nonconvex criterion 

functions is developed. In the present paper we give new rules for calculation of 

tangent minorants, in particular, for minimum and maximum functions and also 

stochastic tangent minorants for mathematical expectation and probability functions. 

Consideration of stochastic minorants is similar to generalization of a deterministic 

gradient method to a stochastic quasigradient method for solution of stochastic 

programming problems. The search of deterministic minorants as well as gradients of 

mathematical expectation functions can be problematic, however calculation and use 

of stochastic minorants and stochastic quasigradients is quite possible. 

Let's consider a problem of global stochastic optimization: 

min [ ( ) ( , )]x X F x Ef x θ∈ = ,  

or 

{ }min [ ( ) ( , ) 0 ]x X P x P f x θ∈ = ≥ ,    

where θ  is a random parameter; E  is a symbol of a mathematical Expectation  over 

θ , ( , )f x θ  is  some continuous in  and integrable in x θ  function; θ ∈Θ ; 

 is a problem probability space, ( , , )PΘ Σ {}P ⋅  is a symbol of probability; X  is a 

continuous or discrete set. 

We shall assume, that for each θ   functions ( , )f θ⋅  admit tangent at points y   

minorants ( , , )x yϕ θ  and, thus, it is implicitly assumed [7], that functions ( , )f θ⋅  

are maximum ones: ( , ) max ( , , )y Xf x x yθ ϕ∈ θ= . Actually, we shall consider 

global optimization problems of  the form: 
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min [ ( ) max ( , , )],x X y YF x E x yψ θ∈ ∈=  

   ( )   min [ ( ) min ( , , )] ,x X y YF x E x yψ θ∈ ∈=

{ }min ( ) max ( , , ) 0 ,x X y YP x P x yψ θ∈ ∈
⎡ ⎤= ≥⎣ ⎦         

  { }( )min ( ) min ( , , ) 0 ,x X y YP x P x yψ θ∈ ∈
⎡ ⎤= ≥⎣ ⎦  

where  is some finite or infinite set. These are stochastic minimax (minimin) 

problems.  

Y

Definition 1 [7]. Let X  be a topological space, functions  and ( ), ,F x x X∈ 

( , )x yϕ x X∈ ,  are connected by conditions: y X∈

(i) ( ) ( , )F x x yϕ≥  for all x X∈ y X∈ ; 

(ii) ( ) ( , )F y y yϕ=  for all y X∈ ; 

(iii)  functions { }( ) ( , )y y X
x x yφ ϕ

∈
=  are equicontinuous in . x

Then functions { }( , ),y y Xϕ ⋅ ∈  are called tangent (at points ) minorants for 

. 

y

( )F x

Minorant bounds on optimal values of the objective function. We designate 

*
min ( )x XF F x∈= . Let { }( , )

y X
x yϕ

∈
 be a family of tangent at points  y X∈

minorants for , ( )F x { }y Z X∈ ⊆  be some finite or infinite set of points from 

X . It is obvious, that function ( ) max ( , )y Zx x yφ ϕ∈=  is a minorant for ,  ( )F x

tangent at all points , and quantity y Z∈ 1 min ( )x XF xφ∈=  is an estimate from 

below for 
*

F .  

With the purpose of the solution of stochastic programming problems we shall 

introduce a concept of stochastic tangent minorant. 

Definition 2. Functions { ( , , ), , }y y Xφ θ θ⋅ ∈ ∈Θ  , where Θ  is a carrier of 

some probability space ( ), , PΘ Σ , are called stochastic tangent minorants for  ( )F x



4      Norkin V.I., Onischenko B.O. 

if functions ( , , )x yφ θ  are measurable in θ , and for every y X∈  mathematical 

expectations ( , ) ( , , )x y E x yϕ φ= θ  exist and are tangent at point  minorants for 

 (in the sense of definition 1). 

y

( )F x

As stochastic tangent minorants of a mathematical expectation function 

( ) ( ),F x Ef x θ=  it is possible to take tangent minorants of subintegral function 

( ),f x θ .  

Lemma 1. Assume that ( , )f θ⋅  has tangent minorants ( , , )x yφ θ : 

1) ( , ) ( , , )f x x yθ φ≥ θ    for all  ,x y X∈ ;  

2) ( , ) ( , , )f y y yθ φ= θ    for all y X∈ ;  

3) ( , , )x yφ θ   is continuous in ( , )x y  a.s. in θ ;  

4) ( , , )x yφ θ   is measurable in θ  for all , ;x y X∈   

5) ( , , ) ( )x y Mφ θ ≤ θ  for all ,x y X∈ , ( )EM θ < ∞ .  

Then ( , ) ( , , )x y E x yϕ ϕ= θ  is a tangent minorant for ( ) ( , )F x Ef x θ= . 

Here the situation is similar to the calculation of stochastic gradients of a 

mathematical expectation function. Finding of deterministic gradients as well as 

deterministic minorants of mathematical expectation functions can be problematic, 

however calculation and use of stochastic quasigradients and stochastic minorants is 

quite possible. 

Tangent minorants of a probability function { }( ) ( , ) 0P x P f x θ= ≥  are 

constructed in a similar way, namely, as a tangent at point y  minorant of  it is 

possible to take function 

( )P x

{ }( , ) ( , , ) 0x y P x yφ φ θ= ≥ , where ( , , )x yφ θ  is a 

tangent at point  minorant of function y ( , )f x θ . 

Tangent minorants are closely connected to maximums functions. On the one 

hand, for maximum functions tangent minorants are easily constructed, and on the 

other hand  functions admitting tangent minorants are maximum functions [7].  

If ( ) max ( , ) ( , ( ))z Zf x x z x z xψ ψ∈= =  is a maximum function, where 

( , )x yψ  is continuous in  uniformly in x z Z∈ , then, obviously, function 

( , ) ( , ( ))x y x z yϕ ψ=  is a tangent at point  minorant for  [7].  y ( )f x
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Let's consider some ways of construction of stochastic tangent minorants. 

Tangent cones. If functions ( , )f x θ  are Lipschitz (Holder of degree α ) with 

integrable in θ  Lipschitz constant ( )L θ , then as a tangent at point   minorant for y

( , )f x θ  it is possible to take function ( , , ) ( , ) ( )x y f y L x y αφ θ θ θ= − − . 

Tangent paraboloids. For smooth in  functions x ( , )f x θ  with Lipschitz 

gradient (with a constant 1( )L θ ) as stochastic tangent minorants it is possible to use 

tangent to the graph at points  paraboloids. y

Minorants of composite functions. Let 0 1( ) ( ( ),..., ( ))mf x f f x f x= , 

x X∈ , where X  is a topological space, 0 ( )f z  is monotonously growing 

continuous function on the set { }1( ),..., ( ) m
mY f x f x R y X= ∈ ∈ . Let functions 

1,i = m , have tangent minorants ( , )i x yϕ 1,i = m . Then functions ( )if ⋅

{ }0 1( , ) ( ( , ),..., ( , ))m y X
y f y yϕ ϕ ϕ

∈
⋅ = ⋅ ⋅  are tangent minorants for  [7]. ( )f x

Minorants of a difference of convex functions. If function  ( )f x

representable as a difference of two convex on compact nX R∈  functions 1( )f x  

and 2 ( )f x , i.e. 1 2( ) ( ) ( )f x f x f x= − , then functions 

{ }1 2( , , ) ( ) ( ), ( )
y X

x y f y g y x y f xϕ θ
∈

= + − − , where  is a generalized ( )g y

gradient of function  at point , are concave tangent minorants for  on ( )f ⋅ y ( )f x

X  [7]. 

Minorants of a minimum function. Let ( ) inf ( , )
z Z

f x x zψ
∈

=  and functions 

( , )zψ ⋅  for all  admit (concave) tangent at points   minorants z Z∈ y ( , , )x y zφ . 

Then function ( , ) inf ( , , )z Zx y x y zϕ φ∈=  is (concave) tangent at  minorant for y

( )f x . 

Minorants of expectation function with measure depending on decisions: 
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( ) ( , ) ( , ) ( )xF x E f x f x p dxθ θ θ
Θ

= = ∫ θ  [17]. Assume that for each (tangent) 

point  for all  holds: y x
( , ) ( , ) ( , )f x f y L y xθ θ θ≥ − − y   and  ( ) ( ) ( )x y yp p l xθ θ θ≥ − − y . 

Then 

( )
( ) ( , ) ( , ) ( , , )

( )
y

y y
y

l
F x E f y L y x y E x y

p
θ

yθ θ ϕ
θ

⎡ ⎤⎛ ⎞
≥ − + − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

θ , 

i.e. functions ( , , )yx yϕ θ  constitute stochastic tangent minorants for . If only 

density depends on , i.e.  

( )F x

x ( )( ) ( ) ( )
( )

x
x y

y

pF x E f f dP
p

θθ θ θ
θΘ

= = ∫ ,  and ( )xp θ  

admits tangent minorants ( , , )x yφ θ  then functions 

( , , ) ( ) ( , , ) / ( )yx y f x y pϕ θ θ φ θ= θ  can be taken as stochastic tangent minorants 

for .  ( )F x
We approximate the original stochastic optimization problem by its empirical 

approximation: 

( ) 1
( ) : 1 ( , ) mink i

k xi
F x k f x θ X∈=
⎡ ⎤= →⎣ ⎦∑ ,    

where iθ  are independent observations of random parameter θ . If functions  

uniformly converge to 

( )kF x

( ) ( , )F x Ef x θ=  when , then the initial problem 

can be solved through the sequence of uniform approximations.  

k →∞

Let functions ( , , )x yφ θ  are tangent minorants for stochastic functions 

( , )f x θ . Obviously, functions ( ) 1
( , ) 1 ( , , )k i

k i
x y k x yϕ φ θ

=
= ∑ , constitute 

tangent minorants for .  ( )kF x

Piyavskii's method [18] has been repeatedly rediscovered and is one of popular 

methods of  deterministic global optimization. It has two equivalent forms: for 

optimization of maximums functions and for functions admiting the so-called tangent 

minorants [7]. The concept of tangent minorants is the key one for the given method. 

The basic problem of Piyavskii's method in a multivariate case is how to solve 

auxiliary approximating multiextremal problems.  
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The branch and bound method is one of the basic methods of discrete and global 

deterministic optimization. It is characterized by the way of partitioning of the initial 

feasible set (for example, on parallelepipeds, simplexes, etc.), a kind of estimations of 

optimum values of the objective function on subsets (for example, a relaxation of 

constraints, dual estimation, etc.), strategy of refining of the partitioning. The basic 

difference of different variants of the method consists in a way of obtaining 

estimations from below of the optimal value of the objective function on a fragment 

of partitioning.  

A common feature of considered methods applied to a problem of global 

stochastic optimization is the use of a sequence of uniform approximations of the 

objective function and tangent minorants of these approximations. Thus, we obtain 

new modifications of Piyavskii's method and of the  branch and bound method for the 

solution of so-called limit extremal problems in which objective function is optimized 

through a sequence of approximating functions.  

We radically solve a problem of solution of auxiliary approximating problems in 

a multivariate Piyavskii's method, namely, we solve them not precisely (that is rather 

difficult) but approximately by partitioning the domain of search into subsimplexes 

and by searching a subsimplex with the least estimate from below of the 

approximating function (instead of searching points of its global minimum). Then this 

variant of the method, in essence, turns into a branch and bound method with 

minorant estimates of branches. 

An important feature of the classical branch and bound method is the opportunity 

of rejection of unpromising branches. However it cannot be easily done if we use 

stochastic estimations of branches in stochastic programming problems as there is a 

probability of loss of a global extremum. In one of modifications of the branch and 

bound method we do not reject branches (subsets of partitioning) with bad estimates, 

but aggregate them, i.e. we come back to more rough partitioning of the domain of 

search, but do it no more, than finite number of times. 
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